1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
ulyssesedgell6 edited this page 2025-02-21 00:48:31 +00:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion criteria to construct, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled variations of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that utilizes reinforcement finding out to enhance reasoning capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. A crucial differentiating function is its support learning (RL) action, which was utilized to fine-tune the model's reactions beyond the standard pre-training and tweak procedure. By integrating RL, DeepSeek-R1 can adjust better to user feedback and objectives, eventually improving both relevance and clarity. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, meaning it's equipped to break down complicated inquiries and reason through them in a detailed manner. This assisted reasoning procedure allows the model to produce more accurate, transparent, and detailed answers. This design combines RL-based fine-tuning with CoT capabilities, aiming to produce structured responses while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has captured the market's attention as a flexible text-generation model that can be integrated into different workflows such as representatives, logical thinking and data analysis tasks.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion parameters, enabling effective inference by routing queries to the most pertinent specialist "clusters." This approach permits the model to specialize in various issue domains while maintaining total performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to release the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking abilities of the main R1 model to more effective architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more efficient models to imitate the behavior and thinking patterns of the bigger DeepSeek-R1 design, using it as a teacher model.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend deploying this model with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent damaging content, and assess designs against key safety criteria. At the time of writing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create multiple guardrails tailored to different use cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are releasing. To request a limitation increase, develop a limit increase request and connect to your account team.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For instructions, see Set up permissions to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, avoid damaging content, and assess models against key security criteria. You can execute security steps for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to apply guardrails to examine user inputs and design actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general circulation includes the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the design's output, another guardrail check is used. If the output passes this last check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following sections demonstrate reasoning utilizing this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, select Model brochure under Foundation models in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and select the DeepSeek-R1 design.

The design detail page provides vital details about the model's capabilities, prices structure, and execution guidelines. You can discover detailed usage guidelines, consisting of sample API calls and code bits for integration. The model supports numerous text generation tasks, consisting of content creation, code generation, and concern answering, its support discovering optimization and CoT reasoning capabilities. The page likewise includes deployment alternatives and licensing details to assist you begin with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, choose Deploy.

You will be triggered to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Number of instances, enter a number of instances (in between 1-100). 6. For Instance type, select your circumstances type. For optimal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can configure innovative security and facilities settings, including virtual personal cloud (VPC) networking, service role consents, and encryption settings. For a lot of use cases, the default settings will work well. However, for production implementations, you may wish to evaluate these settings to line up with your organization's security and compliance requirements. 7. Choose Deploy to start utilizing the model.

When the implementation is total, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock playground. 8. Choose Open in play ground to access an interactive interface where you can try out different prompts and adjust design parameters like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum results. For instance, material for reasoning.

This is an outstanding method to check out the design's reasoning and text generation capabilities before integrating it into your applications. The playground offers immediate feedback, helping you understand how the model responds to different inputs and letting you tweak your prompts for optimal results.

You can rapidly test the design in the playground through the UI. However, to conjure up the deployed design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out reasoning utilizing a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have developed the guardrail, utilize the following code to carry out guardrails. The script initializes the bedrock_runtime customer, configures inference criteria, and sends a request to produce text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart offers two practical approaches: utilizing the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both methods to help you choose the method that best matches your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to develop a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The design web browser shows available models, with details like the supplier name and model abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card. Each design card shows crucial details, including:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if applicable), indicating that this model can be registered with Amazon Bedrock, permitting you to utilize Amazon Bedrock APIs to invoke the design

    5. Choose the design card to see the model details page.

    The model details page consists of the following details:

    - The model name and supplier details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage standards

    Before you release the model, it's suggested to review the design details and license terms to validate compatibility with your use case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, utilize the immediately produced name or produce a custom one.
  1. For Instance type ¸ choose a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, go into the number of circumstances (default: 1). Selecting suitable instance types and counts is important for expense and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time inference is chosen by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for precision. For this design, we strongly suggest adhering to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to release the model.

    The implementation procedure can take a number of minutes to complete.

    When implementation is total, your endpoint status will change to InService. At this moment, the model is ready to accept reasoning demands through the endpoint. You can keep an eye on the deployment progress on the SageMaker console Endpoints page, which will show relevant metrics and status details. When the release is total, you can invoke the design using a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get started with DeepSeek-R1 using the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the necessary AWS authorizations and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the design is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail utilizing the Amazon Bedrock console or the API, and implement it as displayed in the following code:

    Clean up

    To avoid unwanted charges, complete the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the model utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, pick Marketplace deployments.
  5. In the Managed implementations section, locate the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're deleting the correct deployment: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you released will sustain expenses if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI business build innovative options using AWS services and accelerated calculate. Currently, he is concentrated on establishing techniques for fine-tuning and enhancing the reasoning performance of large language models. In his complimentary time, Vivek enjoys hiking, surgiteams.com seeing motion pictures, and trying different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about building services that assist clients accelerate their AI journey and unlock company value.