kefu/ws/chatgpt.go

345 lines
10 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package ws
import (
"encoding/json"
"errors"
"fmt"
"github.com/tidwall/gjson"
"kefu/lib"
"kefu/models"
"kefu/tools"
"log"
)
// 反向提问
func GptRevQuestion(entId, visitorId string, kefuInfo models.User, question string) string {
config := models.GetEntConfigsMap(entId, "chatGPTUrl", "chatGPTSecret", "chatGPTRevQuestion", "QdrantHistoryNum", "BigModelName")
if config["chatGPTRevQuestion"] == "" || config["chatGPTUrl"] == "" || config["chatGPTSecret"] == "" {
return ""
}
//大模型名称
bigModelName := config["BigModelName"]
if bigModelName == "" {
bigModelName = "gpt-3.5-turbo-16k"
}
//是否传递历史记录
gptMessages := make([]lib.Gpt3Dot5Message, 0)
gptMessages = append(gptMessages, lib.Gpt3Dot5Message{
Role: "system",
Content: config["chatGPTRevQuestion"],
})
num := 5
if config["QdrantHistoryNum"] != "" {
num = tools.Str2Int(config["QdrantHistoryNum"])
}
messages := models.FindMessageByQueryPage(1, uint(num), "visitor_id = ?", visitorId)
for i := len(messages) - 1; i >= 1; i-- {
reqContent := messages[i].Content
if messages[i].MesType == "visitor" {
gptMessages = append(gptMessages, lib.Gpt3Dot5Message{
Role: "user",
Content: reqContent,
})
} else {
gptMessages = append(gptMessages, lib.Gpt3Dot5Message{
Role: "assistant",
Content: reqContent,
})
}
}
gptMessages = append(gptMessages, lib.Gpt3Dot5Message{
Role: "user",
Content: config["chatGPTRevQuestion"] + question,
})
openaiUrl := config["chatGPTUrl"]
openaiKey := config["chatGPTSecret"]
gpt := lib.NewChatGptTool(openaiUrl, openaiKey)
log.Println("反向提问调用GPT请求参数", gptMessages)
content, _ := gpt.ChatGPT3Dot5Turbo(gptMessages, bigModelName)
if content == "" {
return ""
}
VisitorMessage(visitorId, content, kefuInfo)
go KefuMessage(visitorId, content, kefuInfo)
models.CreateMessage(kefuInfo.Name, visitorId, content, "kefu", entId, "read")
return content
}
// 调用GPT-3.5流式响应
func Gpt3Knowledge(entId, visitorId string, kefuInfo models.User, content string) string {
config := models.GetEntConfigsMap(entId, "chatGPTUrl", "chatGPTSecret", "QdrantAIStatus", "QdrantAICollect", "chatGPTSystem", "chatGPTPrompt",
"RobotName", "RobotAvator", "QdrantScore", "QdrantHistoryNum",
"BaiduCheckApiKey", "BaiduCheckSecretKey", "BaiduCheckDisableStream",
"BigModelName", "EmbeddingModelName", "SearchEmptyInterrupt",
"chatGPTHistory")
lib.QdrantBase = models.FindConfig("QdrantBase")
lib.QdrantPort = models.FindConfig("QdrantPort")
_, ok := ClientList[visitorId]
messageContent := ""
//没有开启AI回复
if config["QdrantAIStatus"] != "true" || config["chatGPTUrl"] == "" || config["chatGPTSecret"] == "" {
return ""
}
//大模型名称
bigModelName := config["BigModelName"]
if bigModelName == "" {
bigModelName = "gpt-3.5-turbo-16k"
}
//调用百度文本审核用户问题
isBaiduCheck := false
if config["BaiduCheckApiKey"] != "" && config["BaiduCheckSecretKey"] != "" {
isBaiduCheck = true
b := lib.BaiduCheck{
API_KEY: config["BaiduCheckApiKey"],
SECRET_KEY: config["BaiduCheckSecretKey"],
}
r, err := b.Check(content)
log.Println("百度审核结果:", content, r)
ok := gjson.Get(r, "conclusion").String()
if err == nil && ok != "合规" {
messageContent = "对不起,内容包含敏感信息!"
VisitorMessage(visitorId, messageContent, kefuInfo)
return messageContent
}
}
kefuInfo.Nickname = tools.Ifelse(config["RobotName"] != "", config["RobotName"], kefuInfo.Nickname).(string)
kefuInfo.Avator = tools.Ifelse(config["RobotAvator"] != "", config["RobotAvator"], kefuInfo.Avator).(string)
openaiUrl := config["chatGPTUrl"]
openaiKey := config["chatGPTSecret"]
collectName := config["QdrantAICollect"]
embeddingModelName := config["EmbeddingModelName"]
promptMessage := config["chatGPTPrompt"]
if promptMessage != "" {
content = promptMessage + content
}
system := ""
if config["chatGPTSystem"] != "" {
system = config["chatGPTSystem"]
}
system = fmt.Sprintf("%s\n当前时间%s", system, tools.GetNowTime())
//是否传递历史记录
gptMessages := make([]lib.Gpt3Dot5Message, 0)
history := make([]lib.CozeCompletionMessage, 0)
num := 5
if config["QdrantHistoryNum"] != "" {
num = tools.Str2Int(config["QdrantHistoryNum"])
}
messages := models.FindMessageByQueryPage(1, uint(num), "visitor_id = ?", visitorId)
for i := len(messages) - 1; i >= 1; i-- {
reqContent := messages[i].Content
if messages[i].MesType == "visitor" {
gptMessages = append(gptMessages, lib.Gpt3Dot5Message{
Role: "user",
Content: reqContent,
})
//扣子智能体
if bigModelName == "coze" {
history = append(history, lib.CozeCompletionMessage{
Role: "user",
Content: reqContent,
ContentType: "text",
})
}
} else {
gptMessages = append(gptMessages, lib.Gpt3Dot5Message{
Role: "assistant",
Content: reqContent,
})
//扣子智能体
if bigModelName == "coze" {
history = append(history, lib.CozeCompletionMessage{
Role: "assistant",
Content: reqContent,
ContentType: "text",
Type: "answer",
})
}
}
}
//扣子智能体
if bigModelName == "coze" {
coze := &lib.Coze{
BOT_ID: config["chatGPTUrl"],
API_KEY: config["chatGPTSecret"],
}
messageContent, _ := coze.ChatCoze(visitorId, visitorId, content, history)
if ok && messageContent != "" {
VisitorMessage(visitorId, messageContent, kefuInfo)
go KefuMessage(visitorId, messageContent, kefuInfo)
models.CreateMessage(kefuInfo.Name, visitorId, messageContent, "kefu", entId, "read")
}
return messageContent
}
gpt := lib.NewChatGptTool(openaiUrl, openaiKey)
score := 0.78
if config["QdrantScore"] != "" {
score = tools.Str2Float64(config["QdrantScore"])
}
searchEmptyInterrupt := false
if config["SearchEmptyInterrupt"] == "true" {
searchEmptyInterrupt = true
}
message, err, _ := GptEmbedding(openaiUrl, openaiKey, embeddingModelName, collectName, content, system, score, searchEmptyInterrupt, gptMessages)
if err != nil {
log.Println(err)
return ""
}
log.Println("调用GPT请求参数", message)
stream, err := gpt.ChatGPTHttpStream(message, bigModelName, visitorId)
if err != nil {
log.Println(err)
return ""
}
msgId := tools.Now()
for {
response, err := stream.Recv()
if err != nil {
log.Println("调用GPT响应流", err)
break
}
if len(response.Choices) < 1 {
continue
}
data := response.Choices[0].Delta.Content
if data == "" {
continue
}
log.Println(data)
messageContent += data
tempContent := messageContent
//百度文本审核时屏蔽流式输出
if isBaiduCheck && config["BaiduCheckDisableStream"] != "" {
tempContent = "正在回复内容..."
}
VisitorMessageSameMsgId(uint(msgId), visitorId, tempContent, kefuInfo)
}
stream.Close()
//AI反向提问
//go GptRevQuestion(entId, visitorId, kefuInfo, content)
//记录日志
go llmLog(entId, kefuInfo.Name, bigModelName, messageContent, message)
if ok && messageContent != "" {
//调用百度文本审核AI回复结果
if config["BaiduCheckApiKey"] != "" && config["BaiduCheckSecretKey"] != "" {
b := lib.BaiduCheck{
API_KEY: config["BaiduCheckApiKey"],
SECRET_KEY: config["BaiduCheckSecretKey"],
}
r, err := b.Check(messageContent)
log.Println("百度审核结果:", messageContent, r)
ok := gjson.Get(r, "conclusion").String()
if err == nil && ok != "合规" {
messageContent = "对不起AI回复内容包含敏感信息"
}
VisitorMessageSameMsgId(uint(msgId), visitorId, messageContent, kefuInfo)
}
go KefuMessage(visitorId, messageContent, kefuInfo)
models.CreateMessage(kefuInfo.Name, visitorId, messageContent, "kefu", entId, "read")
return messageContent
}
return messageContent
}
// 调用GPT embedding接口并查询qdrant集合数据
func GptEmbedding(openaiUrl, openaiKey, embeddingModelName, collectionName, keywords, system string, score float64, searchEmptyInterrupt bool, history []lib.Gpt3Dot5Message) ([]lib.Gpt3Dot5Message, error, []string) {
message := make([]lib.Gpt3Dot5Message, 0)
urls := make([]string, 0)
if collectionName == "" {
message = append(message, lib.Gpt3Dot5Message{
Role: "system",
Content: system,
})
message = append(message, history...)
message = append(message, lib.Gpt3Dot5Message{
Role: "user",
Content: keywords,
})
return message, nil, urls
}
gpt := lib.NewChatGptTool(openaiUrl, openaiKey)
//调用GPT text-embedding-ada-002
if embeddingModelName == "" {
embeddingModelName = "text-embedding-ada-002"
}
response, err := gpt.GetEmbedding(keywords, embeddingModelName)
if err != nil {
return nil, err, urls
}
var embeddingResponse lib.EmbeddingResponse
json.Unmarshal([]byte(response), &embeddingResponse)
params := map[string]interface{}{"exact": false, "hnsw_ef": 128}
if len(embeddingResponse.Data) == 0 {
return nil, errors.New(response), urls
}
vector := embeddingResponse.Data[0].Embedding
limit := 10
points, err := lib.SearchPoints(collectionName, params, vector, limit, score)
if err != nil {
log.Println(err)
}
log.Println("qdrant相似搜索结果", string(points))
result := gjson.Get(string(points), "result").Array()
if len(result) == 0 && searchEmptyInterrupt {
return message, errors.New("搜索知识库为空中断AI回复"), urls
}
content := ""
line := ""
for key, row := range result {
key++
line = fmt.Sprintf("%d. %s\n", key, row.Get("payload.text").String())
url := row.Get("payload.url").String()
if url != "" && key <= 3 {
urls = append(urls, url)
}
//arr := []rune(line)
//if len(arr) > 500 {
// line = string(arr[:500])
//}
content += line
}
//if content == "" {
// content = "我是知识库AI机器人\n"
//}
message = append(message, lib.Gpt3Dot5Message{
Role: "system",
Content: fmt.Sprintf("%s\n%s\n", system, content),
})
message = append(message, history...)
//userQuestion := fmt.Sprintf("%s%s", promptMessage, keywords)
//userQuestion := keywords
message = append(message, lib.Gpt3Dot5Message{
Role: "user",
Content: keywords,
})
urls = tools.RemoveDuplicateStrings(urls)
return message, nil, urls
}
// 记录LLM日志
func llmLog(entId, kefuName, modelName, answer string, questions []lib.Gpt3Dot5Message) {
q := ""
for _, question := range questions {
q += question.Role + ":" + question.Content + "\n"
}
llm := models.LlmLog{
EntID: entId,
KefuName: kefuName,
ModelName: modelName,
Question: q,
Answer: answer,
}
llm.AddLlmLog()
}